pulseview/pv/data/signalbase.cpp

691 lines
18 KiB
C++

/*
* This file is part of the PulseView project.
*
* Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
* Copyright (C) 2016 Soeren Apel <soeren@apelpie.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "analog.hpp"
#include "analogsegment.hpp"
#include "decode/row.hpp"
#include "logic.hpp"
#include "logicsegment.hpp"
#include "signalbase.hpp"
#include "signaldata.hpp"
#include <QDebug>
#include <pv/binding/decoder.hpp>
#include <pv/session.hpp>
using std::dynamic_pointer_cast;
using std::make_shared;
using std::out_of_range;
using std::shared_ptr;
using std::tie;
using std::unique_lock;
namespace pv {
namespace data {
const int SignalBase::ColourBGAlpha = 8 * 256 / 100;
const uint64_t SignalBase::ConversionBlockSize = 4096;
const uint32_t SignalBase::ConversionDelay = 1000; // 1 second
SignalBase::SignalBase(shared_ptr<sigrok::Channel> channel, ChannelType channel_type) :
channel_(channel),
channel_type_(channel_type),
conversion_type_(NoConversion),
min_value_(0),
max_value_(0)
{
if (channel_)
internal_name_ = QString::fromStdString(channel_->name());
connect(&delayed_conversion_starter_, SIGNAL(timeout()),
this, SLOT(on_delayed_conversion_start()));
delayed_conversion_starter_.setSingleShot(true);
delayed_conversion_starter_.setInterval(ConversionDelay);
}
SignalBase::~SignalBase()
{
stop_conversion();
}
shared_ptr<sigrok::Channel> SignalBase::channel() const
{
return channel_;
}
QString SignalBase::name() const
{
return (channel_) ? QString::fromStdString(channel_->name()) : name_;
}
QString SignalBase::internal_name() const
{
return internal_name_;
}
QString SignalBase::display_name() const
{
if (name() != internal_name_)
return name() + " (" + internal_name_ + ")";
else
return name();
}
void SignalBase::set_name(QString name)
{
if (channel_)
channel_->set_name(name.toUtf8().constData());
name_ = name;
name_changed(name);
}
bool SignalBase::enabled() const
{
return (channel_) ? channel_->enabled() : true;
}
void SignalBase::set_enabled(bool value)
{
if (channel_) {
channel_->set_enabled(value);
enabled_changed(value);
}
}
SignalBase::ChannelType SignalBase::type() const
{
return channel_type_;
}
unsigned int SignalBase::index() const
{
return (channel_) ? channel_->index() : 0;
}
unsigned int SignalBase::logic_bit_index() const
{
if (channel_type_ == LogicChannel)
return channel_->index();
else
return 0;
}
QColor SignalBase::colour() const
{
return colour_;
}
void SignalBase::set_colour(QColor colour)
{
colour_ = colour;
bgcolour_ = colour;
bgcolour_.setAlpha(ColourBGAlpha);
colour_changed(colour);
}
QColor SignalBase::bgcolour() const
{
return bgcolour_;
}
void SignalBase::set_data(shared_ptr<pv::data::SignalData> data)
{
if (data_) {
disconnect(data.get(), SIGNAL(samples_cleared()),
this, SLOT(on_samples_cleared()));
disconnect(data.get(), SIGNAL(samples_added(QObject*, uint64_t, uint64_t)),
this, SLOT(on_samples_added(QObject*, uint64_t, uint64_t)));
if (channel_type_ == AnalogChannel) {
shared_ptr<Analog> analog = analog_data();
assert(analog);
disconnect(analog.get(), SIGNAL(min_max_changed(float, float)),
this, SLOT(on_min_max_changed(float, float)));
}
}
data_ = data;
if (data_) {
connect(data.get(), SIGNAL(samples_cleared()),
this, SLOT(on_samples_cleared()));
connect(data.get(), SIGNAL(samples_added(QObject*, uint64_t, uint64_t)),
this, SLOT(on_samples_added(QObject*, uint64_t, uint64_t)));
if (channel_type_ == AnalogChannel) {
shared_ptr<Analog> analog = analog_data();
assert(analog);
connect(analog.get(), SIGNAL(min_max_changed(float, float)),
this, SLOT(on_min_max_changed(float, float)));
}
}
}
shared_ptr<data::Analog> SignalBase::analog_data() const
{
shared_ptr<Analog> result = nullptr;
if (channel_type_ == AnalogChannel)
result = dynamic_pointer_cast<Analog>(data_);
return result;
}
shared_ptr<data::Logic> SignalBase::logic_data() const
{
shared_ptr<Logic> result = nullptr;
if (channel_type_ == LogicChannel)
result = dynamic_pointer_cast<Logic>(data_);
if (((conversion_type_ == A2LConversionByThreshold) ||
(conversion_type_ == A2LConversionBySchmittTrigger)))
result = dynamic_pointer_cast<Logic>(converted_data_);
return result;
}
bool SignalBase::segment_is_complete(uint32_t segment_id) const
{
bool result = true;
if (channel_type_ == AnalogChannel)
{
shared_ptr<Analog> data = dynamic_pointer_cast<Analog>(data_);
auto segments = data->analog_segments();
try {
result = segments.at(segment_id)->is_complete();
} catch (out_of_range) {
// Do nothing
}
}
if (channel_type_ == LogicChannel)
{
shared_ptr<Logic> data = dynamic_pointer_cast<Logic>(data_);
auto segments = data->logic_segments();
try {
result = segments.at(segment_id)->is_complete();
} catch (out_of_range) {
// Do nothing
}
}
return result;
}
SignalBase::ConversionType SignalBase::get_conversion_type() const
{
return conversion_type_;
}
void SignalBase::set_conversion_type(ConversionType t)
{
if (conversion_type_ != NoConversion) {
stop_conversion();
// Discard converted data
converted_data_.reset();
samples_cleared();
}
conversion_type_ = t;
// Re-create an empty container
// so that the signal is recognized as providing logic data
// and thus can be assigned to a decoder
if (conversion_is_a2l())
if (!converted_data_)
converted_data_ = make_shared<Logic>(1); // Contains only one channel
start_conversion();
conversion_type_changed(t);
}
map<QString, QVariant> SignalBase::get_conversion_options() const
{
return conversion_options_;
}
bool SignalBase::set_conversion_option(QString key, QVariant value)
{
QVariant old_value;
auto key_iter = conversion_options_.find(key);
if (key_iter != conversion_options_.end())
old_value = key_iter->second;
conversion_options_[key] = value;
return (value != old_value);
}
vector<double> SignalBase::get_conversion_thresholds(const ConversionType t,
const bool always_custom) const
{
vector<double> result;
ConversionType conv_type = t;
ConversionPreset preset;
// Use currently active conversion if no conversion type was supplied
if (conv_type == NoConversion)
conv_type = conversion_type_;
if (always_custom)
preset = NoPreset;
else
preset = get_current_conversion_preset();
if (conv_type == A2LConversionByThreshold) {
double thr = 0;
if (preset == NoPreset) {
auto thr_iter = conversion_options_.find("threshold_value");
if (thr_iter != conversion_options_.end())
thr = (thr_iter->second).toDouble();
}
if (preset == DynamicPreset)
thr = (min_value_ + max_value_) * 0.5; // middle between min and max
if ((int)preset == 1) thr = 0.9;
if ((int)preset == 2) thr = 1.8;
if ((int)preset == 3) thr = 2.5;
if ((int)preset == 4) thr = 1.5;
result.push_back(thr);
}
if (conv_type == A2LConversionBySchmittTrigger) {
double thr_lo = 0, thr_hi = 0;
if (preset == NoPreset) {
auto thr_lo_iter = conversion_options_.find("threshold_value_low");
if (thr_lo_iter != conversion_options_.end())
thr_lo = (thr_lo_iter->second).toDouble();
auto thr_hi_iter = conversion_options_.find("threshold_value_high");
if (thr_hi_iter != conversion_options_.end())
thr_hi = (thr_hi_iter->second).toDouble();
}
if (preset == DynamicPreset) {
const double amplitude = max_value_ - min_value_;
const double center = min_value_ + (amplitude / 2);
thr_lo = center - (amplitude * 0.15); // 15% margin
thr_hi = center + (amplitude * 0.15); // 15% margin
}
if ((int)preset == 1) { thr_lo = 0.3; thr_hi = 1.2; }
if ((int)preset == 2) { thr_lo = 0.7; thr_hi = 2.5; }
if ((int)preset == 3) { thr_lo = 1.3; thr_hi = 3.7; }
if ((int)preset == 4) { thr_lo = 0.8; thr_hi = 2.0; }
result.push_back(thr_lo);
result.push_back(thr_hi);
}
return result;
}
vector< pair<QString, int> > SignalBase::get_conversion_presets() const
{
vector< pair<QString, int> > presets;
if (conversion_type_ == A2LConversionByThreshold) {
// Source: http://www.interfacebus.com/voltage_threshold.html
presets.emplace_back(tr("Signal average"), 0);
presets.emplace_back(tr("0.9V (for 1.8V CMOS)"), 1);
presets.emplace_back(tr("1.8V (for 3.3V CMOS)"), 2);
presets.emplace_back(tr("2.5V (for 5.0V CMOS)"), 3);
presets.emplace_back(tr("1.5V (for TTL)"), 4);
}
if (conversion_type_ == A2LConversionBySchmittTrigger) {
// Source: http://www.interfacebus.com/voltage_threshold.html
presets.emplace_back(tr("Signal average +/- 15%"), 0);
presets.emplace_back(tr("0.3V/1.2V (for 1.8V CMOS)"), 1);
presets.emplace_back(tr("0.7V/2.5V (for 3.3V CMOS)"), 2);
presets.emplace_back(tr("1.3V/3.7V (for 5.0V CMOS)"), 3);
presets.emplace_back(tr("0.8V/2.0V (for TTL)"), 4);
}
return presets;
}
SignalBase::ConversionPreset SignalBase::get_current_conversion_preset() const
{
auto preset = conversion_options_.find("preset");
if (preset != conversion_options_.end())
return (ConversionPreset)((preset->second).toInt());
return DynamicPreset;
}
void SignalBase::set_conversion_preset(ConversionPreset id)
{
conversion_options_["preset"] = (int)id;
}
#ifdef ENABLE_DECODE
bool SignalBase::is_decode_signal() const
{
return (channel_type_ == DecodeChannel);
}
#endif
void SignalBase::save_settings(QSettings &settings) const
{
settings.setValue("name", name());
settings.setValue("enabled", enabled());
settings.setValue("colour", colour());
settings.setValue("conversion_type", (int)conversion_type_);
settings.setValue("conv_options", (int)(conversion_options_.size()));
int i = 0;
for (auto kvp : conversion_options_) {
settings.setValue(QString("conv_option%1_key").arg(i), kvp.first);
settings.setValue(QString("conv_option%1_value").arg(i), kvp.second);
i++;
}
}
void SignalBase::restore_settings(QSettings &settings)
{
set_name(settings.value("name").toString());
set_enabled(settings.value("enabled").toBool());
set_colour(settings.value("colour").value<QColor>());
set_conversion_type((ConversionType)settings.value("conversion_type").toInt());
int conv_options = settings.value("conv_options").toInt();
if (conv_options)
for (int i = 0; i < conv_options; i++) {
QString key = settings.value(QString("conv_option%1_key").arg(i)).toString();
QVariant value = settings.value(QString("conv_option%1_value").arg(i));
conversion_options_[key] = value;
}
}
bool SignalBase::conversion_is_a2l() const
{
return ((channel_type_ == AnalogChannel) &&
((conversion_type_ == A2LConversionByThreshold) ||
(conversion_type_ == A2LConversionBySchmittTrigger)));
}
void SignalBase::convert_single_segment(AnalogSegment *asegment, LogicSegment *lsegment)
{
uint64_t start_sample, end_sample;
start_sample = end_sample = 0;
start_sample = lsegment->get_sample_count();
end_sample = asegment->get_sample_count();
if (end_sample > start_sample) {
tie(min_value_, max_value_) = asegment->get_min_max();
// Create sigrok::Analog instance
float *asamples = new float[ConversionBlockSize];
uint8_t *lsamples = new uint8_t[ConversionBlockSize];
vector<shared_ptr<sigrok::Channel> > channels;
channels.push_back(channel_);
vector<const sigrok::QuantityFlag*> mq_flags;
const sigrok::Quantity * const mq = sigrok::Quantity::VOLTAGE;
const sigrok::Unit * const unit = sigrok::Unit::VOLT;
shared_ptr<sigrok::Packet> packet =
Session::sr_context->create_analog_packet(channels,
asamples, ConversionBlockSize, mq, unit, mq_flags);
shared_ptr<sigrok::Analog> analog =
dynamic_pointer_cast<sigrok::Analog>(packet->payload());
// Convert
uint64_t i = start_sample;
if (conversion_type_ == A2LConversionByThreshold) {
const double threshold = get_conversion_thresholds()[0];
// Convert as many sample blocks as we can
while ((end_sample - i) > ConversionBlockSize) {
asegment->get_samples(i, i + ConversionBlockSize, asamples);
shared_ptr<sigrok::Logic> logic =
analog->get_logic_via_threshold(threshold, lsamples);
lsegment->append_payload(logic->data_pointer(), logic->data_length());
samples_added(lsegment->segment_id(), i, i + ConversionBlockSize);
i += ConversionBlockSize;
}
// Re-create sigrok::Analog and convert remaining samples
packet = Session::sr_context->create_analog_packet(channels,
asamples, end_sample - i, mq, unit, mq_flags);
analog = dynamic_pointer_cast<sigrok::Analog>(packet->payload());
asegment->get_samples(i, end_sample, asamples);
shared_ptr<sigrok::Logic> logic =
analog->get_logic_via_threshold(threshold, lsamples);
lsegment->append_payload(logic->data_pointer(), logic->data_length());
samples_added(lsegment->segment_id(), i, end_sample);
}
if (conversion_type_ == A2LConversionBySchmittTrigger) {
const vector<double> thresholds = get_conversion_thresholds();
const double lo_thr = thresholds[0];
const double hi_thr = thresholds[1];
uint8_t state = 0; // TODO Use value of logic sample n-1 instead of 0
// Convert as many sample blocks as we can
while ((end_sample - i) > ConversionBlockSize) {
asegment->get_samples(i, i + ConversionBlockSize, asamples);
shared_ptr<sigrok::Logic> logic =
analog->get_logic_via_schmitt_trigger(lo_thr, hi_thr,
&state, lsamples);
lsegment->append_payload(logic->data_pointer(), logic->data_length());
samples_added(lsegment->segment_id(), i, i + ConversionBlockSize);
i += ConversionBlockSize;
}
// Re-create sigrok::Analog and convert remaining samples
packet = Session::sr_context->create_analog_packet(channels,
asamples, end_sample - i, mq, unit, mq_flags);
analog = dynamic_pointer_cast<sigrok::Analog>(packet->payload());
asegment->get_samples(i, end_sample, asamples);
shared_ptr<sigrok::Logic> logic =
analog->get_logic_via_schmitt_trigger(lo_thr, hi_thr,
&state, lsamples);
lsegment->append_payload(logic->data_pointer(), logic->data_length());
samples_added(lsegment->segment_id(), i, end_sample);
}
// If acquisition is ongoing, start-/endsample may have changed
end_sample = asegment->get_sample_count();
delete[] lsamples;
delete[] asamples;
}
}
void SignalBase::conversion_thread_proc()
{
shared_ptr<Analog> analog_data;
if (conversion_is_a2l()) {
analog_data = dynamic_pointer_cast<Analog>(data_);
if (analog_data->analog_segments().size() == 0) {
unique_lock<mutex> input_lock(conversion_input_mutex_);
conversion_input_cond_.wait(input_lock);
}
} else
// Currently, we only handle A2L conversions
return;
// If we had to wait for input data, we may have been notified to terminate
if (conversion_interrupt_)
return;
uint32_t segment_id = 0;
AnalogSegment *asegment = analog_data->analog_segments().front().get();
assert(asegment);
const shared_ptr<Logic> logic_data = dynamic_pointer_cast<Logic>(converted_data_);
assert(logic_data);
// Create the initial logic data segment if needed
if (logic_data->logic_segments().size() == 0) {
shared_ptr<LogicSegment> new_segment =
make_shared<LogicSegment>(*logic_data.get(), 0, 1, asegment->samplerate());
logic_data->push_segment(new_segment);
}
LogicSegment *lsegment = logic_data->logic_segments().front().get();
assert(lsegment);
do {
convert_single_segment(asegment, lsegment);
if (analog_data->analog_segments().size() > logic_data->logic_segments().size()) {
// There are more segments to process
segment_id++;
try {
asegment = analog_data->analog_segments().at(segment_id).get();
} catch (out_of_range) {
qDebug() << "Conversion error for" << name() << ": no analog segment" \
<< segment_id << ", segments size is" << analog_data->analog_segments().size();
return;
}
shared_ptr<LogicSegment> new_segment = make_shared<LogicSegment>(
*logic_data.get(), segment_id, 1, asegment->samplerate());
logic_data->push_segment(new_segment);
lsegment = logic_data->logic_segments().back().get();
} else {
// No more segments to process, wait for data or interrupt
if (!conversion_interrupt_) {
unique_lock<mutex> input_lock(conversion_input_mutex_);
conversion_input_cond_.wait(input_lock);
}
}
} while (!conversion_interrupt_);
}
void SignalBase::start_conversion(bool delayed_start)
{
if (delayed_start) {
delayed_conversion_starter_.start();
return;
}
stop_conversion();
if (converted_data_)
converted_data_->clear();
samples_cleared();
conversion_interrupt_ = false;
conversion_thread_ = std::thread(
&SignalBase::conversion_thread_proc, this);
}
void SignalBase::stop_conversion()
{
// Stop conversion so we can restart it from the beginning
conversion_interrupt_ = true;
conversion_input_cond_.notify_one();
if (conversion_thread_.joinable())
conversion_thread_.join();
}
void SignalBase::on_samples_cleared()
{
if (converted_data_)
converted_data_->clear();
samples_cleared();
}
void SignalBase::on_samples_added(QObject* segment, uint64_t start_sample,
uint64_t end_sample)
{
if (conversion_type_ != NoConversion) {
if (conversion_thread_.joinable()) {
// Notify the conversion thread since it's running
conversion_input_cond_.notify_one();
} else {
// Start the conversion thread unless the delay timer is running
if (!delayed_conversion_starter_.isActive())
start_conversion();
}
}
data::Segment* s = qobject_cast<data::Segment*>(segment);
samples_added(s->segment_id(), start_sample, end_sample);
}
void SignalBase::on_min_max_changed(float min, float max)
{
// Restart conversion if one is enabled and uses a calculated threshold
if ((conversion_type_ != NoConversion) &&
(get_current_conversion_preset() == DynamicPreset))
start_conversion(true);
min_max_changed(min, max);
}
void SignalBase::on_capture_state_changed(int state)
{
if (state == Session::Running) {
// Restart conversion if one is enabled
if (conversion_type_ != NoConversion)
start_conversion();
}
}
void SignalBase::on_delayed_conversion_start()
{
start_conversion();
}
} // namespace data
} // namespace pv