pulseview/pv/data/logicsegment.cpp

501 lines
13 KiB
C++

/*
* This file is part of the PulseView project.
*
* Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <extdef.h>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include "logic.hpp"
#include "logicsegment.hpp"
#include <libsigrokcxx/libsigrokcxx.hpp>
using std::lock_guard;
using std::recursive_mutex;
using std::max;
using std::min;
using std::shared_ptr;
using std::vector;
using sigrok::Logic;
namespace pv {
namespace data {
const int LogicSegment::MipMapScalePower = 4;
const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes
LogicSegment::LogicSegment(pv::data::Logic& owner, uint32_t segment_id,
unsigned int unit_size, uint64_t samplerate) :
Segment(segment_id, samplerate, unit_size),
owner_(owner),
last_append_sample_(0)
{
memset(mip_map_, 0, sizeof(mip_map_));
}
LogicSegment::~LogicSegment()
{
lock_guard<recursive_mutex> lock(mutex_);
for (MipMapLevel &l : mip_map_)
free(l.data);
}
uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
{
#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
return *(uint64_t*)ptr;
#else
uint64_t value = 0;
switch (unit_size_) {
default:
value |= ((uint64_t)ptr[7]) << 56;
/* FALLTHRU */
case 7:
value |= ((uint64_t)ptr[6]) << 48;
/* FALLTHRU */
case 6:
value |= ((uint64_t)ptr[5]) << 40;
/* FALLTHRU */
case 5:
value |= ((uint64_t)ptr[4]) << 32;
/* FALLTHRU */
case 4:
value |= ((uint32_t)ptr[3]) << 24;
/* FALLTHRU */
case 3:
value |= ((uint32_t)ptr[2]) << 16;
/* FALLTHRU */
case 2:
value |= ptr[1] << 8;
/* FALLTHRU */
case 1:
value |= ptr[0];
/* FALLTHRU */
case 0:
break;
}
return value;
#endif
}
void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
{
#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
*(uint64_t*)ptr = value;
#else
switch (unit_size_) {
default:
ptr[7] = value >> 56;
/* FALLTHRU */
case 7:
ptr[6] = value >> 48;
/* FALLTHRU */
case 6:
ptr[5] = value >> 40;
/* FALLTHRU */
case 5:
ptr[4] = value >> 32;
/* FALLTHRU */
case 4:
ptr[3] = value >> 24;
/* FALLTHRU */
case 3:
ptr[2] = value >> 16;
/* FALLTHRU */
case 2:
ptr[1] = value >> 8;
/* FALLTHRU */
case 1:
ptr[0] = value;
/* FALLTHRU */
case 0:
break;
}
#endif
}
void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
{
assert(unit_size_ == logic->unit_size());
assert((logic->data_length() % unit_size_) == 0);
append_payload(logic->data_pointer(), logic->data_length());
}
void LogicSegment::append_payload(void *data, uint64_t data_size)
{
assert((data_size % unit_size_) == 0);
lock_guard<recursive_mutex> lock(mutex_);
uint64_t prev_sample_count = sample_count_;
uint64_t sample_count = data_size / unit_size_;
append_samples(data, sample_count);
// Generate the first mip-map from the data
append_payload_to_mipmap();
if (sample_count > 1)
owner_.notify_samples_added(this, prev_sample_count + 1,
prev_sample_count + 1 + sample_count);
else
owner_.notify_samples_added(this, prev_sample_count + 1,
prev_sample_count + 1);
}
void LogicSegment::get_samples(int64_t start_sample,
int64_t end_sample, uint8_t* dest) const
{
assert(start_sample >= 0);
assert(start_sample <= (int64_t)sample_count_);
assert(end_sample >= 0);
assert(end_sample <= (int64_t)sample_count_);
assert(start_sample <= end_sample);
assert(dest != nullptr);
lock_guard<recursive_mutex> lock(mutex_);
get_raw_samples(start_sample, (end_sample - start_sample), dest);
}
SegmentLogicDataIterator* LogicSegment::begin_sample_iteration(uint64_t start)
{
return (SegmentLogicDataIterator*)begin_raw_sample_iteration(start);
}
void LogicSegment::continue_sample_iteration(SegmentLogicDataIterator* it, uint64_t increase)
{
Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
}
void LogicSegment::end_sample_iteration(SegmentLogicDataIterator* it)
{
Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
}
void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
{
lock_guard<recursive_mutex> lock(mutex_);
const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
MipMapDataUnit) * MipMapDataUnit;
if (new_data_length > m.data_length) {
m.data_length = new_data_length;
// Padding is added to allow for the uint64_t write word
m.data = realloc(m.data, new_data_length * unit_size_ +
sizeof(uint64_t));
}
}
void LogicSegment::append_payload_to_mipmap()
{
MipMapLevel &m0 = mip_map_[0];
uint64_t prev_length;
uint8_t *dest_ptr;
SegmentRawDataIterator* it;
uint64_t accumulator;
unsigned int diff_counter;
// Expand the data buffer to fit the new samples
prev_length = m0.length;
m0.length = sample_count_ / MipMapScaleFactor;
// Break off if there are no new samples to compute
if (m0.length == prev_length)
return;
reallocate_mipmap_level(m0);
dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
// Iterate through the samples to populate the first level mipmap
uint64_t start_sample = prev_length * MipMapScaleFactor;
uint64_t end_sample = m0.length * MipMapScaleFactor;
it = begin_raw_sample_iteration(start_sample);
for (uint64_t i = start_sample; i < end_sample;) {
// Accumulate transitions which have occurred in this sample
accumulator = 0;
diff_counter = MipMapScaleFactor;
while (diff_counter-- > 0) {
const uint64_t sample = unpack_sample(it->value);
accumulator |= last_append_sample_ ^ sample;
last_append_sample_ = sample;
continue_raw_sample_iteration(it, 1);
i++;
}
pack_sample(dest_ptr, accumulator);
dest_ptr += unit_size_;
}
end_raw_sample_iteration(it);
// Compute higher level mipmaps
for (unsigned int level = 1; level < ScaleStepCount; level++) {
MipMapLevel &m = mip_map_[level];
const MipMapLevel &ml = mip_map_[level - 1];
// Expand the data buffer to fit the new samples
prev_length = m.length;
m.length = ml.length / MipMapScaleFactor;
// Break off if there are no more samples to be computed
if (m.length == prev_length)
break;
reallocate_mipmap_level(m);
// Subsample the lower level
const uint8_t* src_ptr = (uint8_t*)ml.data +
unit_size_ * prev_length * MipMapScaleFactor;
const uint8_t *const end_dest_ptr =
(uint8_t*)m.data + unit_size_ * m.length;
for (dest_ptr = (uint8_t*)m.data +
unit_size_ * prev_length;
dest_ptr < end_dest_ptr;
dest_ptr += unit_size_) {
accumulator = 0;
diff_counter = MipMapScaleFactor;
while (diff_counter-- > 0) {
accumulator |= unpack_sample(src_ptr);
src_ptr += unit_size_;
}
pack_sample(dest_ptr, accumulator);
}
}
}
uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
{
assert(index < sample_count_);
assert(unit_size_ <= 8); // 8 * 8 = 64 channels
uint8_t data[8];
get_raw_samples(index, 1, data);
uint64_t sample = unpack_sample(data);
return sample;
}
void LogicSegment::get_subsampled_edges(
vector<EdgePair> &edges,
uint64_t start, uint64_t end,
float min_length, int sig_index)
{
uint64_t index = start;
unsigned int level;
bool last_sample;
bool fast_forward;
assert(start <= end);
assert(min_length > 0);
assert(sig_index >= 0);
assert(sig_index < 64);
lock_guard<recursive_mutex> lock(mutex_);
// Make sure we only process as many samples as we have
if (end > get_sample_count())
end = get_sample_count();
const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
const unsigned int min_level = max((int)floorf(logf(min_length) /
LogMipMapScaleFactor) - 1, 0);
const uint64_t sig_mask = 1ULL << sig_index;
// Store the initial state
last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
edges.emplace_back(index++, last_sample);
while (index + block_length <= end) {
//----- Continue to search -----//
level = min_level;
// We cannot fast-forward if there is no mip-map data at
// at the minimum level.
fast_forward = (mip_map_[level].data != nullptr);
if (min_length < MipMapScaleFactor) {
// Search individual samples up to the beginning of
// the next first level mip map block
const uint64_t final_index = min(end,
pow2_ceil(index, MipMapScalePower));
for (; index < final_index &&
(index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
index++) {
const bool sample =
(get_unpacked_sample(index) & sig_mask) != 0;
// If there was a change we cannot fast forward
if (sample != last_sample) {
fast_forward = false;
break;
}
}
} else {
// If resolution is less than a mip map block,
// round up to the beginning of the mip-map block
// for this level of detail
const int min_level_scale_power =
(level + 1) * MipMapScalePower;
index = pow2_ceil(index, min_level_scale_power);
if (index >= end)
break;
// We can fast forward only if there was no change
const bool sample =
(get_unpacked_sample(index) & sig_mask) != 0;
if (last_sample != sample)
fast_forward = false;
}
if (fast_forward) {
// Fast forward: This involves zooming out to higher
// levels of the mip map searching for changes, then
// zooming in on them to find the point where the edge
// begins.
// Slide right and zoom out at the beginnings of mip-map
// blocks until we encounter a change
while (true) {
const int level_scale_power =
(level + 1) * MipMapScalePower;
const uint64_t offset =
index >> level_scale_power;
// Check if we reached the last block at this
// level, or if there was a change in this block
if (offset >= mip_map_[level].length ||
(get_subsample(level, offset) &
sig_mask))
break;
if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
// If we are now at the beginning of a
// higher level mip-map block ascend one
// level
if (level + 1 >= ScaleStepCount ||
!mip_map_[level + 1].data)
break;
level++;
} else {
// Slide right to the beginning of the
// next mip map block
index = pow2_ceil(index + 1,
level_scale_power);
}
}
// Zoom in, and slide right until we encounter a change,
// and repeat until we reach min_level
while (true) {
assert(mip_map_[level].data);
const int level_scale_power =
(level + 1) * MipMapScalePower;
const uint64_t offset =
index >> level_scale_power;
// Check if we reached the last block at this
// level, or if there was a change in this block
if (offset >= mip_map_[level].length ||
(get_subsample(level, offset) &
sig_mask)) {
// Zoom in unless we reached the minimum
// zoom
if (level == min_level)
break;
level--;
} else {
// Slide right to the beginning of the
// next mip map block
index = pow2_ceil(index + 1,
level_scale_power);
}
}
// If individual samples within the limit of resolution,
// do a linear search for the next transition within the
// block
if (min_length < MipMapScaleFactor) {
for (; index < end; index++) {
const bool sample = (get_unpacked_sample(index) &
sig_mask) != 0;
if (sample != last_sample)
break;
}
}
}
//----- Store the edge -----//
// Take the last sample of the quanization block
const int64_t final_index = index + block_length;
if (index + block_length > end)
break;
// Store the final state
const bool final_sample =
(get_unpacked_sample(final_index - 1) & sig_mask) != 0;
edges.emplace_back(index, final_sample);
index = final_index;
last_sample = final_sample;
}
// Add the final state
const bool end_sample = get_unpacked_sample(end) & sig_mask;
if (last_sample != end_sample)
edges.emplace_back(end, end_sample);
edges.emplace_back(end + 1, end_sample);
}
uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
{
assert(level >= 0);
assert(mip_map_[level].data);
return unpack_sample((uint8_t*)mip_map_[level].data +
unit_size_ * offset);
}
uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
{
const uint64_t p = 1 << power;
return (x + p - 1) / p * p;
}
} // namespace data
} // namespace pv