pulseview/pv/data/decodesignal.cpp

1146 lines
31 KiB
C++

/*
* This file is part of the PulseView project.
*
* Copyright (C) 2017 Soeren Apel <soeren@apelpie.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <limits>
#include <QDebug>
#include "logic.hpp"
#include "logicsegment.hpp"
#include "decodesignal.hpp"
#include "signaldata.hpp"
#include <pv/binding/decoder.hpp>
#include <pv/data/decode/decoder.hpp>
#include <pv/data/decode/row.hpp>
#include <pv/globalsettings.hpp>
#include <pv/session.hpp>
using std::lock_guard;
using std::make_pair;
using std::make_shared;
using std::min;
using std::out_of_range;
using std::shared_ptr;
using std::unique_lock;
using pv::data::decode::Annotation;
using pv::data::decode::Decoder;
using pv::data::decode::Row;
namespace pv {
namespace data {
const double DecodeSignal::DecodeMargin = 1.0;
const double DecodeSignal::DecodeThreshold = 0.2;
const int64_t DecodeSignal::DecodeChunkLength = 256 * 1024;
DecodeSignal::DecodeSignal(pv::Session &session) :
SignalBase(nullptr, SignalBase::DecodeChannel),
session_(session),
srd_session_(nullptr),
logic_mux_data_invalid_(false),
current_segment_id_(0)
{
connect(&session_, SIGNAL(capture_state_changed(int)),
this, SLOT(on_capture_state_changed(int)));
}
DecodeSignal::~DecodeSignal()
{
reset_decode();
}
const vector< shared_ptr<Decoder> >& DecodeSignal::decoder_stack() const
{
return stack_;
}
void DecodeSignal::stack_decoder(const srd_decoder *decoder)
{
assert(decoder);
const shared_ptr<Decoder> dec = make_shared<decode::Decoder>(decoder);
stack_.push_back(dec);
// Set name if this decoder is the first in the list
if (stack_.size() == 1)
set_name(QString::fromUtf8(decoder->name));
// Include the newly created decode channels in the channel lists
update_channel_list();
auto_assign_signals(dec);
commit_decoder_channels();
begin_decode();
}
void DecodeSignal::remove_decoder(int index)
{
assert(index >= 0);
assert(index < (int)stack_.size());
// Find the decoder in the stack
auto iter = stack_.begin();
for (int i = 0; i < index; i++, iter++)
assert(iter != stack_.end());
// Delete the element
stack_.erase(iter);
// Update channels and decoded data
update_channel_list();
begin_decode();
}
bool DecodeSignal::toggle_decoder_visibility(int index)
{
auto iter = stack_.cbegin();
for (int i = 0; i < index; i++, iter++)
assert(iter != stack_.end());
shared_ptr<Decoder> dec = *iter;
// Toggle decoder visibility
bool state = false;
if (dec) {
state = !dec->shown();
dec->show(state);
}
return state;
}
void DecodeSignal::reset_decode()
{
if (decode_thread_.joinable()) {
decode_interrupt_ = true;
decode_input_cond_.notify_one();
decode_thread_.join();
}
if (logic_mux_thread_.joinable()) {
logic_mux_interrupt_ = true;
logic_mux_cond_.notify_one();
logic_mux_thread_.join();
}
stop_srd_session();
class_rows_.clear();
current_segment_id_ = 0;
segments_.clear();
logic_mux_data_.reset();
logic_mux_data_invalid_ = true;
error_message_ = QString();
decode_reset();
}
void DecodeSignal::begin_decode()
{
if (decode_thread_.joinable()) {
decode_interrupt_ = true;
decode_input_cond_.notify_one();
decode_thread_.join();
}
if (logic_mux_thread_.joinable()) {
logic_mux_interrupt_ = true;
logic_mux_cond_.notify_one();
logic_mux_thread_.join();
}
reset_decode();
if (stack_.size() == 0) {
error_message_ = tr("No decoders");
return;
}
assert(channels_.size() > 0);
if (get_assigned_signal_count() == 0) {
error_message_ = tr("There are no channels assigned to this decoder");
return;
}
// Make sure that all assigned channels still provide logic data
// (can happen when a converted signal was assigned but the
// conversion removed in the meanwhile)
for (data::DecodeChannel &ch : channels_)
if (ch.assigned_signal && !(ch.assigned_signal->logic_data() != nullptr))
ch.assigned_signal = nullptr;
// Check that all decoders have the required channels
for (const shared_ptr<decode::Decoder> &dec : stack_)
if (!dec->have_required_channels()) {
error_message_ = tr("One or more required channels "
"have not been specified");
return;
}
// Map out all the annotation classes
for (const shared_ptr<decode::Decoder> &dec : stack_) {
assert(dec);
const srd_decoder *const decc = dec->decoder();
assert(dec->decoder());
for (const GSList *l = decc->annotation_rows; l; l = l->next) {
const srd_decoder_annotation_row *const ann_row =
(srd_decoder_annotation_row *)l->data;
assert(ann_row);
const Row row(decc, ann_row);
for (const GSList *ll = ann_row->ann_classes;
ll; ll = ll->next)
class_rows_[make_pair(decc,
GPOINTER_TO_INT(ll->data))] = row;
}
}
// Free the logic data and its segment(s) if it needs to be updated
if (logic_mux_data_invalid_)
logic_mux_data_.reset();
if (!logic_mux_data_) {
const uint32_t ch_count = get_assigned_signal_count();
logic_mux_unit_size_ = (ch_count + 7) / 8;
logic_mux_data_ = make_shared<Logic>(ch_count);
}
// Receive notifications when new sample data is available
connect_input_notifiers();
if (get_input_segment_count() == 0) {
error_message_ = tr("No input data");
return;
}
// Make sure the logic output data is complete and up-to-date
logic_mux_interrupt_ = false;
logic_mux_thread_ = std::thread(&DecodeSignal::logic_mux_proc, this);
// Decode the muxed logic data
decode_interrupt_ = false;
decode_thread_ = std::thread(&DecodeSignal::decode_proc, this);
}
QString DecodeSignal::error_message() const
{
lock_guard<mutex> lock(output_mutex_);
return error_message_;
}
const vector<data::DecodeChannel> DecodeSignal::get_channels() const
{
return channels_;
}
void DecodeSignal::auto_assign_signals(const shared_ptr<Decoder> dec)
{
bool new_assignment = false;
// Try to auto-select channels that don't have signals assigned yet
for (data::DecodeChannel &ch : channels_) {
// If a decoder is given, auto-assign only its channels
if (dec && (ch.decoder_ != dec))
continue;
if (ch.assigned_signal)
continue;
for (shared_ptr<data::SignalBase> s : session_.signalbases()) {
const QString ch_name = ch.name.toLower();
const QString s_name = s->name().toLower();
if (s->logic_data() &&
((ch_name.contains(s_name)) || (s_name.contains(ch_name)))) {
ch.assigned_signal = s.get();
new_assignment = true;
}
}
}
if (new_assignment) {
logic_mux_data_invalid_ = true;
commit_decoder_channels();
channels_updated();
}
}
void DecodeSignal::assign_signal(const uint16_t channel_id, const SignalBase *signal)
{
for (data::DecodeChannel &ch : channels_)
if (ch.id == channel_id) {
ch.assigned_signal = signal;
logic_mux_data_invalid_ = true;
}
commit_decoder_channels();
channels_updated();
begin_decode();
}
int DecodeSignal::get_assigned_signal_count() const
{
// Count all channels that have a signal assigned to them
return count_if(channels_.begin(), channels_.end(),
[](data::DecodeChannel ch) { return ch.assigned_signal; });
}
void DecodeSignal::set_initial_pin_state(const uint16_t channel_id, const int init_state)
{
for (data::DecodeChannel &ch : channels_)
if (ch.id == channel_id)
ch.initial_pin_state = init_state;
channels_updated();
begin_decode();
}
double DecodeSignal::samplerate() const
{
double result = 0;
// TODO For now, we simply return the first samplerate that we have
if (segments_.size() > 0)
result = segments_.front().samplerate;
return result;
}
const pv::util::Timestamp DecodeSignal::start_time() const
{
pv::util::Timestamp result;
// TODO For now, we simply return the first start time that we have
if (segments_.size() > 0)
result = segments_.front().start_time;
return result;
}
int64_t DecodeSignal::get_working_sample_count(uint32_t segment_id) const
{
// The working sample count is the highest sample number for
// which all used signals have data available, so go through all
// channels and use the lowest overall sample count of the segment
int64_t count = std::numeric_limits<int64_t>::max();
bool no_signals_assigned = true;
for (const data::DecodeChannel &ch : channels_)
if (ch.assigned_signal) {
no_signals_assigned = false;
const shared_ptr<Logic> logic_data = ch.assigned_signal->logic_data();
if (!logic_data || logic_data->logic_segments().empty())
return 0;
try {
const shared_ptr<LogicSegment> segment = logic_data->logic_segments().at(segment_id);
count = min(count, (int64_t)segment->get_sample_count());
} catch (out_of_range) {
return 0;
}
}
return (no_signals_assigned ? 0 : count);
}
int64_t DecodeSignal::get_decoded_sample_count(uint32_t segment_id) const
{
lock_guard<mutex> decode_lock(output_mutex_);
int64_t result = 0;
try {
const DecodeSegment *segment = &(segments_.at(segment_id));
result = segment->samples_decoded;
} catch (out_of_range) {
// Do nothing
}
return result;
}
vector<Row> DecodeSignal::visible_rows() const
{
lock_guard<mutex> lock(output_mutex_);
vector<Row> rows;
for (const shared_ptr<decode::Decoder> &dec : stack_) {
assert(dec);
if (!dec->shown())
continue;
const srd_decoder *const decc = dec->decoder();
assert(dec->decoder());
// Add a row for the decoder if it doesn't have a row list
if (!decc->annotation_rows)
rows.emplace_back(decc);
// Add the decoder rows
for (const GSList *l = decc->annotation_rows; l; l = l->next) {
const srd_decoder_annotation_row *const ann_row =
(srd_decoder_annotation_row *)l->data;
assert(ann_row);
rows.emplace_back(decc, ann_row);
}
}
return rows;
}
void DecodeSignal::get_annotation_subset(
vector<pv::data::decode::Annotation> &dest,
const decode::Row &row, uint32_t segment_id, uint64_t start_sample,
uint64_t end_sample) const
{
lock_guard<mutex> lock(output_mutex_);
try {
const DecodeSegment *segment = &(segments_.at(segment_id));
const map<const decode::Row, decode::RowData> *rows =
&(segment->annotation_rows);
const auto iter = rows->find(row);
if (iter != rows->end())
(*iter).second.get_annotation_subset(dest,
start_sample, end_sample);
} catch (out_of_range) {
// Do nothing
}
}
void DecodeSignal::save_settings(QSettings &settings) const
{
SignalBase::save_settings(settings);
settings.setValue("decoders", (int)(stack_.size()));
// Save decoder stack
int decoder_idx = 0;
for (shared_ptr<decode::Decoder> decoder : stack_) {
settings.beginGroup("decoder" + QString::number(decoder_idx++));
settings.setValue("id", decoder->decoder()->id);
// Save decoder options
const map<string, GVariant*>& options = decoder->options();
settings.setValue("options", (int)options.size());
// Note: decode::Decoder::options() returns only the options
// that differ from the default. See binding::Decoder::getter()
int i = 0;
for (auto option : options) {
settings.beginGroup("option" + QString::number(i));
settings.setValue("name", QString::fromStdString(option.first));
GlobalSettings::store_gvariant(settings, option.second);
settings.endGroup();
i++;
}
settings.endGroup();
}
// Save channel mapping
settings.setValue("channels", (int)channels_.size());
for (unsigned int channel_id = 0; channel_id < channels_.size(); channel_id++) {
auto channel = find_if(channels_.begin(), channels_.end(),
[&](data::DecodeChannel ch) { return ch.id == channel_id; });
if (channel == channels_.end()) {
qDebug() << "ERROR: Gap in channel index:" << channel_id;
continue;
}
settings.beginGroup("channel" + QString::number(channel_id));
settings.setValue("name", channel->name); // Useful for debugging
settings.setValue("initial_pin_state", channel->initial_pin_state);
if (channel->assigned_signal)
settings.setValue("assigned_signal_name", channel->assigned_signal->name());
settings.endGroup();
}
}
void DecodeSignal::restore_settings(QSettings &settings)
{
SignalBase::restore_settings(settings);
// Restore decoder stack
GSList *dec_list = g_slist_copy((GSList*)srd_decoder_list());
int decoders = settings.value("decoders").toInt();
for (int decoder_idx = 0; decoder_idx < decoders; decoder_idx++) {
settings.beginGroup("decoder" + QString::number(decoder_idx));
QString id = settings.value("id").toString();
for (GSList *entry = dec_list; entry; entry = entry->next) {
const srd_decoder *dec = (srd_decoder*)entry->data;
if (!dec)
continue;
if (QString::fromUtf8(dec->id) == id) {
shared_ptr<decode::Decoder> decoder =
make_shared<decode::Decoder>(dec);
stack_.push_back(decoder);
// Restore decoder options that differ from their default
int options = settings.value("options").toInt();
for (int i = 0; i < options; i++) {
settings.beginGroup("option" + QString::number(i));
QString name = settings.value("name").toString();
GVariant *value = GlobalSettings::restore_gvariant(settings);
decoder->set_option(name.toUtf8(), value);
settings.endGroup();
}
// Include the newly created decode channels in the channel lists
update_channel_list();
break;
}
}
settings.endGroup();
channels_updated();
}
// Restore channel mapping
unsigned int channels = settings.value("channels").toInt();
const unordered_set< shared_ptr<data::SignalBase> > signalbases =
session_.signalbases();
for (unsigned int channel_id = 0; channel_id < channels; channel_id++) {
auto channel = find_if(channels_.begin(), channels_.end(),
[&](data::DecodeChannel ch) { return ch.id == channel_id; });
if (channel == channels_.end()) {
qDebug() << "ERROR: Non-existant channel index:" << channel_id;
continue;
}
settings.beginGroup("channel" + QString::number(channel_id));
QString assigned_signal_name = settings.value("assigned_signal_name").toString();
for (shared_ptr<data::SignalBase> signal : signalbases)
if (signal->name() == assigned_signal_name)
channel->assigned_signal = signal.get();
channel->initial_pin_state = settings.value("initial_pin_state").toInt();
settings.endGroup();
}
// Update the internal structures
update_channel_list();
commit_decoder_channels();
begin_decode();
}
uint32_t DecodeSignal::get_input_segment_count() const
{
uint64_t count = std::numeric_limits<uint64_t>::max();
bool no_signals_assigned = true;
for (const data::DecodeChannel &ch : channels_)
if (ch.assigned_signal) {
no_signals_assigned = false;
const shared_ptr<Logic> logic_data = ch.assigned_signal->logic_data();
if (!logic_data || logic_data->logic_segments().empty())
return 0;
// Find the min value of all segment counts
if ((uint64_t)(logic_data->logic_segments().size()) < count)
count = logic_data->logic_segments().size();
}
return (no_signals_assigned ? 0 : count);
}
uint32_t DecodeSignal::get_input_samplerate(uint32_t segment_id) const
{
double samplerate = 0;
for (const data::DecodeChannel &ch : channels_)
if (ch.assigned_signal) {
const shared_ptr<Logic> logic_data = ch.assigned_signal->logic_data();
if (!logic_data || logic_data->logic_segments().empty())
continue;
try {
const shared_ptr<LogicSegment> segment = logic_data->logic_segments().at(segment_id);
samplerate = segment->samplerate();
} catch (out_of_range) {
// Do nothing
}
break;
}
return samplerate;
}
void DecodeSignal::update_channel_list()
{
vector<data::DecodeChannel> prev_channels = channels_;
channels_.clear();
uint16_t id = 0;
// Copy existing entries, create new as needed
for (shared_ptr<Decoder> decoder : stack_) {
const srd_decoder* srd_d = decoder->decoder();
const GSList *l;
// Mandatory channels
for (l = srd_d->channels; l; l = l->next) {
const struct srd_channel *const pdch = (struct srd_channel *)l->data;
bool ch_added = false;
// Copy but update ID if this channel was in the list before
for (data::DecodeChannel &ch : prev_channels)
if (ch.pdch_ == pdch) {
ch.id = id++;
channels_.push_back(ch);
ch_added = true;
break;
}
if (!ch_added) {
// Create new entry without a mapped signal
data::DecodeChannel ch = {id++, 0, false, nullptr,
QString::fromUtf8(pdch->name), QString::fromUtf8(pdch->desc),
SRD_INITIAL_PIN_SAME_AS_SAMPLE0, decoder, pdch};
channels_.push_back(ch);
}
}
// Optional channels
for (l = srd_d->opt_channels; l; l = l->next) {
const struct srd_channel *const pdch = (struct srd_channel *)l->data;
bool ch_added = false;
// Copy but update ID if this channel was in the list before
for (data::DecodeChannel &ch : prev_channels)
if (ch.pdch_ == pdch) {
ch.id = id++;
channels_.push_back(ch);
ch_added = true;
break;
}
if (!ch_added) {
// Create new entry without a mapped signal
data::DecodeChannel ch = {id++, 0, true, nullptr,
QString::fromUtf8(pdch->name), QString::fromUtf8(pdch->desc),
SRD_INITIAL_PIN_SAME_AS_SAMPLE0, decoder, pdch};
channels_.push_back(ch);
}
}
}
// Invalidate the logic output data if the channel assignment changed
if (prev_channels.size() != channels_.size()) {
// The number of channels changed, there's definitely a difference
logic_mux_data_invalid_ = true;
} else {
// Same number but assignment may still differ, so compare all channels
for (size_t i = 0; i < channels_.size(); i++) {
const data::DecodeChannel &p_ch = prev_channels[i];
const data::DecodeChannel &ch = channels_[i];
if ((p_ch.pdch_ != ch.pdch_) ||
(p_ch.assigned_signal != ch.assigned_signal)) {
logic_mux_data_invalid_ = true;
break;
}
}
}
channels_updated();
}
void DecodeSignal::commit_decoder_channels()
{
// Submit channel list to every decoder, containing only the relevant channels
for (shared_ptr<decode::Decoder> dec : stack_) {
vector<data::DecodeChannel*> channel_list;
for (data::DecodeChannel &ch : channels_)
if (ch.decoder_ == dec)
channel_list.push_back(&ch);
dec->set_channels(channel_list);
}
// Channel bit IDs must be in sync with the channel's apperance in channels_
int id = 0;
for (data::DecodeChannel &ch : channels_)
if (ch.assigned_signal)
ch.bit_id = id++;
}
void DecodeSignal::mux_logic_samples(uint32_t segment_id, const int64_t start, const int64_t end)
{
// Enforce end to be greater than start
if (end <= start)
return;
// Fetch the channel segments and their data
vector<shared_ptr<LogicSegment> > segments;
vector<const uint8_t*> signal_data;
vector<uint8_t> signal_in_bytepos;
vector<uint8_t> signal_in_bitpos;
for (data::DecodeChannel &ch : channels_)
if (ch.assigned_signal) {
const shared_ptr<Logic> logic_data = ch.assigned_signal->logic_data();
shared_ptr<LogicSegment> segment;
try {
segment = logic_data->logic_segments().at(segment_id);
} catch (out_of_range) {
qDebug() << "Muxer error for" << name() << ":" << ch.assigned_signal->name() \
<< "has no logic segment" << segment_id;
return;
}
segments.push_back(segment);
uint8_t* data = new uint8_t[(end - start) * segment->unit_size()];
segment->get_samples(start, end, data);
signal_data.push_back(data);
const int bitpos = ch.assigned_signal->logic_bit_index();
signal_in_bytepos.push_back(bitpos / 8);
signal_in_bitpos.push_back(bitpos % 8);
}
shared_ptr<LogicSegment> output_segment;
try {
output_segment = logic_mux_data_->logic_segments().at(segment_id);
} catch (out_of_range) {
qDebug() << "Muxer error for" << name() << ": no logic mux segment" \
<< segment_id << "in mux_logic_samples(), mux segments size is" \
<< logic_mux_data_->logic_segments().size();
return;
}
// Perform the muxing of signal data into the output data
uint8_t* output = new uint8_t[(end - start) * output_segment->unit_size()];
unsigned int signal_count = signal_data.size();
for (int64_t sample_cnt = 0; sample_cnt < (end - start); sample_cnt++) {
int bitpos = 0;
uint8_t bytepos = 0;
const int out_sample_pos = sample_cnt * output_segment->unit_size();
for (unsigned int i = 0; i < output_segment->unit_size(); i++)
output[out_sample_pos + i] = 0;
for (unsigned int i = 0; i < signal_count; i++) {
const int in_sample_pos = sample_cnt * segments[i]->unit_size();
const uint8_t in_sample = 1 &
((signal_data[i][in_sample_pos + signal_in_bytepos[i]]) >> (signal_in_bitpos[i]));
const uint8_t out_sample = output[out_sample_pos + bytepos];
output[out_sample_pos + bytepos] = out_sample | (in_sample << bitpos);
bitpos++;
if (bitpos > 7) {
bitpos = 0;
bytepos++;
}
}
}
output_segment->append_payload(output, (end - start) * output_segment->unit_size());
delete[] output;
for (const uint8_t* data : signal_data)
delete[] data;
}
void DecodeSignal::logic_mux_proc()
{
uint32_t segment_id = 0;
assert(logic_mux_data_);
// Create initial logic mux segment
shared_ptr<LogicSegment> output_segment =
make_shared<LogicSegment>(*logic_mux_data_, segment_id,
logic_mux_unit_size_, 0);
logic_mux_data_->push_segment(output_segment);
output_segment->set_samplerate(get_input_samplerate(0));
do {
const uint64_t input_sample_count = get_working_sample_count(segment_id);
const uint64_t output_sample_count = output_segment->get_sample_count();
const uint64_t samples_to_process =
(input_sample_count > output_sample_count) ?
(input_sample_count - output_sample_count) : 0;
// Process the samples if necessary...
if (samples_to_process > 0) {
const uint64_t unit_size = output_segment->unit_size();
const uint64_t chunk_sample_count = DecodeChunkLength / unit_size;
uint64_t processed_samples = 0;
do {
const uint64_t start_sample = output_sample_count + processed_samples;
const uint64_t sample_count =
min(samples_to_process - processed_samples, chunk_sample_count);
mux_logic_samples(segment_id, start_sample, start_sample + sample_count);
processed_samples += sample_count;
// ...and process the newly muxed logic data
decode_input_cond_.notify_one();
} while (processed_samples < samples_to_process);
}
if (samples_to_process == 0) {
// TODO Optimize this by caching the input segment count and only
// querying it when the cached value was reached
if (segment_id < get_input_segment_count() - 1) {
// Process next segment
segment_id++;
output_segment =
make_shared<LogicSegment>(*logic_mux_data_, segment_id,
logic_mux_unit_size_, 0);
logic_mux_data_->push_segment(output_segment);
output_segment->set_samplerate(get_input_samplerate(segment_id));
} else {
// All segments have been processed
logic_mux_data_invalid_ = false;
// Wait for more input
unique_lock<mutex> logic_mux_lock(logic_mux_mutex_);
logic_mux_cond_.wait(logic_mux_lock);
}
}
} while (!logic_mux_interrupt_);
}
void DecodeSignal::decode_data(
const int64_t abs_start_samplenum, const int64_t sample_count,
const shared_ptr<LogicSegment> input_segment)
{
const int64_t unit_size = input_segment->unit_size();
const int64_t chunk_sample_count = DecodeChunkLength / unit_size;
for (int64_t i = abs_start_samplenum;
!decode_interrupt_ && (i < (abs_start_samplenum + sample_count));
i += chunk_sample_count) {
const int64_t chunk_end = min(i + chunk_sample_count,
abs_start_samplenum + sample_count);
int64_t data_size = (chunk_end - i) * unit_size;
uint8_t* chunk = new uint8_t[data_size];
input_segment->get_samples(i, chunk_end, chunk);
if (srd_session_send(srd_session_, i, chunk_end, chunk,
data_size, unit_size) != SRD_OK) {
error_message_ = tr("Decoder reported an error");
delete[] chunk;
break;
}
delete[] chunk;
{
lock_guard<mutex> lock(output_mutex_);
segments_.at(current_segment_id_).samples_decoded = chunk_end;
}
// Notify the frontend that we processed some data and
// possibly have new annotations as well
new_annotations();
}
}
void DecodeSignal::decode_proc()
{
current_segment_id_ = 0;
// If there is no input data available yet, wait until it is or we're interrupted
if (logic_mux_data_->logic_segments().size() == 0) {
unique_lock<mutex> input_wait_lock(input_mutex_);
decode_input_cond_.wait(input_wait_lock);
}
if (decode_interrupt_)
return;
shared_ptr<LogicSegment> input_segment = logic_mux_data_->logic_segments().front();
assert(input_segment);
// Create the initial segment and set its sample rate so that we can pass it to SRD
create_decode_segment();
segments_.at(current_segment_id_).samplerate = input_segment->samplerate();
segments_.at(current_segment_id_).start_time = input_segment->start_time();
start_srd_session();
uint64_t sample_count = 0;
uint64_t abs_start_samplenum = 0;
do {
// Keep processing new samples until we exhaust the input data
do {
lock_guard<mutex> input_lock(input_mutex_);
sample_count = input_segment->get_sample_count() - abs_start_samplenum;
if (sample_count > 0) {
decode_data(abs_start_samplenum, sample_count, input_segment);
abs_start_samplenum += sample_count;
}
} while (error_message_.isEmpty() && (sample_count > 0) && !decode_interrupt_);
if (error_message_.isEmpty() && !decode_interrupt_ && sample_count == 0) {
if (current_segment_id_ < logic_mux_data_->logic_segments().size() - 1) {
// Process next segment
current_segment_id_++;
try {
input_segment = logic_mux_data_->logic_segments().at(current_segment_id_);
} catch (out_of_range) {
qDebug() << "Decode error for" << name() << ": no logic mux segment" \
<< current_segment_id_ << "in decode_proc(), mux segments size is" \
<< logic_mux_data_->logic_segments().size();
return;
}
abs_start_samplenum = 0;
// Create the next segment and set its metadata
create_decode_segment();
segments_.at(current_segment_id_).samplerate = input_segment->samplerate();
segments_.at(current_segment_id_).start_time = input_segment->start_time();
// Reset decoder state
stop_srd_session();
start_srd_session();
} else {
// All segments have been processed
decode_finished();
// Wait for new input data or an interrupt was requested
unique_lock<mutex> input_wait_lock(input_mutex_);
decode_input_cond_.wait(input_wait_lock);
}
}
} while (error_message_.isEmpty() && !decode_interrupt_);
}
void DecodeSignal::start_srd_session()
{
uint64_t samplerate;
if (srd_session_)
stop_srd_session();
// Create the session
srd_session_new(&srd_session_);
assert(srd_session_);
// Create the decoders
srd_decoder_inst *prev_di = nullptr;
for (const shared_ptr<decode::Decoder> &dec : stack_) {
srd_decoder_inst *const di = dec->create_decoder_inst(srd_session_);
if (!di) {
error_message_ = tr("Failed to create decoder instance");
srd_session_destroy(srd_session_);
srd_session_ = nullptr;
return;
}
if (prev_di)
srd_inst_stack(srd_session_, prev_di, di);
prev_di = di;
}
// Start the session
samplerate = segments_.at(current_segment_id_).samplerate;
if (samplerate)
srd_session_metadata_set(srd_session_, SRD_CONF_SAMPLERATE,
g_variant_new_uint64(samplerate));
srd_pd_output_callback_add(srd_session_, SRD_OUTPUT_ANN,
DecodeSignal::annotation_callback, this);
srd_session_start(srd_session_);
}
void DecodeSignal::stop_srd_session()
{
if (srd_session_) {
// Destroy the session
srd_session_destroy(srd_session_);
srd_session_ = nullptr;
}
}
void DecodeSignal::connect_input_notifiers()
{
// Disconnect the notification slot from the previous set of signals
disconnect(this, SLOT(on_data_cleared()));
disconnect(this, SLOT(on_data_received()));
// Connect the currently used signals to our slot
for (data::DecodeChannel &ch : channels_) {
if (!ch.assigned_signal)
continue;
const data::SignalBase *signal = ch.assigned_signal;
connect(signal, SIGNAL(samples_cleared()),
this, SLOT(on_data_cleared()));
connect(signal, SIGNAL(samples_added(QObject*, uint64_t, uint64_t)),
this, SLOT(on_data_received()));
}
}
void DecodeSignal::create_decode_segment()
{
// Create annotation segment
segments_.emplace_back(DecodeSegment());
// Add annotation classes
for (const shared_ptr<decode::Decoder> &dec : stack_) {
assert(dec);
const srd_decoder *const decc = dec->decoder();
assert(dec->decoder());
// Add a row for the decoder if it doesn't have a row list
if (!decc->annotation_rows)
(segments_.back().annotation_rows)[Row(decc)] =
decode::RowData();
// Add the decoder rows
for (const GSList *l = decc->annotation_rows; l; l = l->next) {
const srd_decoder_annotation_row *const ann_row =
(srd_decoder_annotation_row *)l->data;
assert(ann_row);
const Row row(decc, ann_row);
// Add a new empty row data object
(segments_.back().annotation_rows)[row] =
decode::RowData();
}
}
}
void DecodeSignal::annotation_callback(srd_proto_data *pdata, void *decode_signal)
{
assert(pdata);
assert(decode_signal);
DecodeSignal *const ds = (DecodeSignal*)decode_signal;
assert(ds);
lock_guard<mutex> lock(ds->output_mutex_);
// Find the row
assert(pdata->pdo);
assert(pdata->pdo->di);
const srd_decoder *const decc = pdata->pdo->di->decoder;
assert(decc);
const srd_proto_data_annotation *const pda =
(const srd_proto_data_annotation*)pdata->data;
assert(pda);
auto row_iter = ds->segments_.at(ds->current_segment_id_).annotation_rows.end();
// Try looking up the sub-row of this class
const auto format = pda->ann_class;
const auto r = ds->class_rows_.find(make_pair(decc, format));
if (r != ds->class_rows_.end())
row_iter = ds->segments_.at(ds->current_segment_id_).annotation_rows.find((*r).second);
else {
// Failing that, use the decoder as a key
row_iter = ds->segments_.at(ds->current_segment_id_).annotation_rows.find(Row(decc));
}
if (row_iter == ds->segments_.at(ds->current_segment_id_).annotation_rows.end()) {
qDebug() << "Unexpected annotation: decoder = " << decc <<
", format = " << format;
assert(false);
return;
}
// Add the annotation
(*row_iter).second.emplace_annotation(pdata);
}
void DecodeSignal::on_capture_state_changed(int state)
{
// If a new acquisition was started, we need to start decoding from scratch
if (state == Session::Running) {
logic_mux_data_invalid_ = true;
begin_decode();
}
}
void DecodeSignal::on_data_cleared()
{
reset_decode();
}
void DecodeSignal::on_data_received()
{
if (!logic_mux_thread_.joinable())
begin_decode();
else
logic_mux_cond_.notify_one();
}
} // namespace data
} // namespace pv