pulseview/pv/data/analogsegment.cpp

269 lines
7.6 KiB
C++

/*
* This file is part of the PulseView project.
*
* Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <extdef.h>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <memory>
#include <algorithm>
#include "analog.hpp"
#include "analogsegment.hpp"
using std::lock_guard;
using std::recursive_mutex;
using std::make_pair;
using std::max;
using std::max_element;
using std::min;
using std::min_element;
using std::pair;
using std::unique_ptr;
namespace pv {
namespace data {
const int AnalogSegment::EnvelopeScalePower = 4;
const int AnalogSegment::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
const float AnalogSegment::LogEnvelopeScaleFactor = logf(EnvelopeScaleFactor);
const uint64_t AnalogSegment::EnvelopeDataUnit = 64 * 1024; // bytes
AnalogSegment::AnalogSegment(Analog& owner, uint32_t segment_id, uint64_t samplerate) :
Segment(segment_id, samplerate, sizeof(float)),
owner_(owner),
min_value_(0),
max_value_(0)
{
lock_guard<recursive_mutex> lock(mutex_);
memset(envelope_levels_, 0, sizeof(envelope_levels_));
}
AnalogSegment::~AnalogSegment()
{
lock_guard<recursive_mutex> lock(mutex_);
for (Envelope &e : envelope_levels_)
free(e.samples);
}
void AnalogSegment::append_interleaved_samples(const float *data,
size_t sample_count, size_t stride)
{
assert(unit_size_ == sizeof(float));
lock_guard<recursive_mutex> lock(mutex_);
uint64_t prev_sample_count = sample_count_;
// Deinterleave the samples and add them
unique_ptr<float[]> deint_data(new float[sample_count]);
float *deint_data_ptr = deint_data.get();
for (uint32_t i = 0; i < sample_count; i++) {
*deint_data_ptr = (float)(*data);
deint_data_ptr++;
data += stride;
}
append_samples(deint_data.get(), sample_count);
// Generate the first mip-map from the data
append_payload_to_envelope_levels();
if (sample_count > 1)
owner_.notify_samples_added(this, prev_sample_count + 1,
prev_sample_count + 1 + sample_count);
else
owner_.notify_samples_added(this, prev_sample_count + 1,
prev_sample_count + 1);
}
void AnalogSegment::get_samples(int64_t start_sample, int64_t end_sample,
float* dest) const
{
assert(start_sample >= 0);
assert(start_sample < (int64_t)sample_count_);
assert(end_sample >= 0);
assert(end_sample <= (int64_t)sample_count_);
assert(start_sample <= end_sample);
assert(dest != nullptr);
lock_guard<recursive_mutex> lock(mutex_);
get_raw_samples(start_sample, (end_sample - start_sample), (uint8_t*)dest);
}
const pair<float, float> AnalogSegment::get_min_max() const
{
return make_pair(min_value_, max_value_);
}
SegmentAnalogDataIterator* AnalogSegment::begin_sample_iteration(uint64_t start)
{
return (SegmentAnalogDataIterator*)begin_raw_sample_iteration(start);
}
void AnalogSegment::continue_sample_iteration(SegmentAnalogDataIterator* it, uint64_t increase)
{
Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
}
void AnalogSegment::end_sample_iteration(SegmentAnalogDataIterator* it)
{
Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
}
void AnalogSegment::get_envelope_section(EnvelopeSection &s,
uint64_t start, uint64_t end, float min_length) const
{
assert(end <= get_sample_count());
assert(start <= end);
assert(min_length > 0);
lock_guard<recursive_mutex> lock(mutex_);
const unsigned int min_level = max((int)floorf(logf(min_length) /
LogEnvelopeScaleFactor) - 1, 0);
const unsigned int scale_power = (min_level + 1) *
EnvelopeScalePower;
start >>= scale_power;
end >>= scale_power;
s.start = start << scale_power;
s.scale = 1 << scale_power;
s.length = end - start;
s.samples = new EnvelopeSample[s.length];
memcpy(s.samples, envelope_levels_[min_level].samples + start,
s.length * sizeof(EnvelopeSample));
}
void AnalogSegment::reallocate_envelope(Envelope &e)
{
const uint64_t new_data_length = ((e.length + EnvelopeDataUnit - 1) /
EnvelopeDataUnit) * EnvelopeDataUnit;
if (new_data_length > e.data_length) {
e.data_length = new_data_length;
e.samples = (EnvelopeSample*)realloc(e.samples,
new_data_length * sizeof(EnvelopeSample));
}
}
void AnalogSegment::append_payload_to_envelope_levels()
{
Envelope &e0 = envelope_levels_[0];
uint64_t prev_length;
EnvelopeSample *dest_ptr;
SegmentRawDataIterator* it;
// Expand the data buffer to fit the new samples
prev_length = e0.length;
e0.length = sample_count_ / EnvelopeScaleFactor;
// Calculate min/max values in case we have too few samples for an envelope
const float old_min_value = min_value_, old_max_value = max_value_;
if (sample_count_ < EnvelopeScaleFactor) {
it = begin_raw_sample_iteration(0);
for (uint64_t i = 0; i < sample_count_; i++) {
const float sample = *((float*)it->value);
if (sample < min_value_)
min_value_ = sample;
if (sample > max_value_)
max_value_ = sample;
continue_raw_sample_iteration(it, 1);
}
end_raw_sample_iteration(it);
}
// Break off if there are no new samples to compute
if (e0.length == prev_length)
return;
reallocate_envelope(e0);
dest_ptr = e0.samples + prev_length;
// Iterate through the samples to populate the first level mipmap
uint64_t start_sample = prev_length * EnvelopeScaleFactor;
uint64_t end_sample = e0.length * EnvelopeScaleFactor;
it = begin_raw_sample_iteration(start_sample);
for (uint64_t i = start_sample; i < end_sample; i += EnvelopeScaleFactor) {
const float* samples = (float*)it->value;
const EnvelopeSample sub_sample = {
*min_element(samples, samples + EnvelopeScaleFactor),
*max_element(samples, samples + EnvelopeScaleFactor),
};
if (sub_sample.min < min_value_)
min_value_ = sub_sample.min;
if (sub_sample.max > max_value_)
max_value_ = sub_sample.max;
continue_raw_sample_iteration(it, EnvelopeScaleFactor);
*dest_ptr++ = sub_sample;
}
end_raw_sample_iteration(it);
// Compute higher level mipmaps
for (unsigned int level = 1; level < ScaleStepCount; level++) {
Envelope &e = envelope_levels_[level];
const Envelope &el = envelope_levels_[level - 1];
// Expand the data buffer to fit the new samples
prev_length = e.length;
e.length = el.length / EnvelopeScaleFactor;
// Break off if there are no more samples to be computed
if (e.length == prev_length)
break;
reallocate_envelope(e);
// Subsample the lower level
const EnvelopeSample *src_ptr =
el.samples + prev_length * EnvelopeScaleFactor;
const EnvelopeSample *const end_dest_ptr = e.samples + e.length;
for (dest_ptr = e.samples + prev_length;
dest_ptr < end_dest_ptr; dest_ptr++) {
const EnvelopeSample *const end_src_ptr =
src_ptr + EnvelopeScaleFactor;
EnvelopeSample sub_sample = *src_ptr++;
while (src_ptr < end_src_ptr) {
sub_sample.min = min(sub_sample.min, src_ptr->min);;
sub_sample.max = max(sub_sample.max, src_ptr->max);
src_ptr++;
}
*dest_ptr = sub_sample;
}
}
// Notify if the min or max value changed
if ((old_min_value != min_value_) || (old_max_value != max_value_))
owner_.min_max_changed(min_value_, max_value_);
}
} // namespace data
} // namespace pv