kicad/pcbnew/graphpcb.cpp

916 lines
27 KiB
C++

/* EDITEUR de PCB: AUTOROUTAGE: routines "graphiques" */
/******************************************************/
/* Fichier BOARD.CC */
#include "fctsys.h"
#include "gr_basic.h"
#include "common.h"
#include "pcbnew.h"
#include "autorout.h"
#include "trigo.h"
#include "cell.h"
/* Routines externes */
/* routines internes */
void TraceLignePcb( int x0, int y0, int x1, int y1, int layer, int color );
void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, int layer,
int color, int op_logique );
void DrawHVSegment( int ux0, int uy0, int ux1, int uy1, int demi_largeur, int layer,
int color, int op_logique );
void TraceFilledCercle( BOARD* Pcb, int cx, int cy, int rayon, int masque_layer,
int color, int op_logique );
void TraceCercle( int ux0, int uy0, int ux1, int uy1, int lg, int layer,
int color, int op_logique );
void TraceArc( int ux0, int uy0, int ux1, int uy1, int ArcAngle, int lg, int layer,
int color, int op_logique );
/* Macro d'appel de mise a jour de cellules */
#define OP_CELL( layer, dy, dx ) { if( layer < 0 ) \
{ \
WriteCell( dy, dx, BOTTOM, color ); \
if( Nb_Sides ) \
WriteCell( dy, dx, TOP, color );\
} \
else { \
if( layer == Route_Layer_BOTTOM ) \
WriteCell( dy, dx, BOTTOM, color );\
if( Nb_Sides ) \
if( layer == Route_Layer_TOP ) \
WriteCell( dy, dx, TOP, color );\
} }
/******************************************************************************/
void Place_1_Pad_Board( BOARD* Pcb, D_PAD* pt_pad, int color, int marge, int op_logique )
/******************************************************************************/
/* Initialise a la valeur color, les cellules du Board comprises dans la
* surface du pad pointe par pt_pad, avec la marge reservee pour l'isolement
* et la demi largeur de la piste
* Parametres:
* pt_pad : pointeur sur la description du pad
* color : masque a ecrire dans les cellules
* marge : valeur a ajouter au rayon ou demi cote du pad
* op_logique: type d'ecriture dans la cellule ( WRITE, OR )
*/
{
int dx, dy;
wxPoint shape_pos = pt_pad->ReturnShapePos();;
dx = pt_pad->m_Size.x / 2; dx += marge;
if( pt_pad->m_PadShape == CIRCLE )
{
TraceFilledCercle( Pcb, shape_pos.x, shape_pos.y, dx,
pt_pad->m_Masque_Layer, color, op_logique );
return;
}
dy = pt_pad->m_Size.y / 2; dy += marge;
if( pt_pad->m_PadShape == TRAPEZE )
{
dx += abs( pt_pad->m_DeltaSize.y ) / 2;
dy += abs( pt_pad->m_DeltaSize.x ) / 2;
}
if( (pt_pad->m_Orient % 900) == 0 )
{ /* Le pad est un rectangle horizontal ou vertical */
if( (pt_pad->m_Orient == 900 ) || (pt_pad->m_Orient == 2700) )
{ /* orient tournee de 90 deg */
EXCHG( dx, dy );
}
TraceFilledRectangle( Pcb, shape_pos.x - dx, shape_pos.y - dy,
shape_pos.x + dx, shape_pos.y + dy,
pt_pad->m_Masque_Layer, color, op_logique );
}
else
{
TraceFilledRectangle( Pcb, shape_pos.x - dx, shape_pos.y - dy,
shape_pos.x + dx, shape_pos.y + dy,
(int) pt_pad->m_Orient,
pt_pad->m_Masque_Layer, color, op_logique );
}
}
/************************************************************************/
void TraceFilledCercle( BOARD* Pcb, int cx, int cy, int rayon, int masque_layer,
int color, int op_logique )
/************************************************************************/
/* Initialise a la valeur color, les cellules du Board comprises dans la
* surface du cercle de centre cx,cy.
* Parametres:
* rayon : valeur a ajouter au rayon ou demi cote du pad
* masque_layer = couches occupees
* color : masque a ecrire dans les cellules
* op_logique: type d'ecriture dans la cellule ( WRITE, OR )
*/
{
int row, col;
int ux0, uy0, ux1, uy1;
int row_max, col_max, row_min, col_min;
int trace = 0;
float fdistmin, fdistx, fdisty;
void (*WriteCell)( int, int, int, BoardCell );
int tstwrite = 0;
int distmin;
/* Determination des couches occupees : */
/* routage sur 1 seule couche:
* sur bitmap BOTTOM et Route_Layer_B = Route_Layer_A*/
if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] )
trace = 1; /* Trace sur BOTTOM */
if( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] )
if( Nb_Sides )
trace |= 2;/* Trace sur TOP */
if( trace == 0 )
return;
switch( op_logique )
{
default:
case WRITE_CELL:
WriteCell = SetCell; break;
case WRITE_OR_CELL:
WriteCell = OrCell; break;
case WRITE_XOR_CELL:
WriteCell = XorCell; break;
case WRITE_AND_CELL:
WriteCell = AndCell; break;
case WRITE_ADD_CELL:
WriteCell = AddCell; break;
}
cx -= Pcb->m_BoundaryBox.m_Pos.x; cy -= Pcb->m_BoundaryBox.m_Pos.y;
distmin = rayon;
/* Calcul du rectangle d'encadrement du cercle*/
ux0 = cx - rayon; uy0 = cy - rayon;
ux1 = cx + rayon; uy1 = cy + rayon;
/* Calcul des coord limites des cellules appartenant au rectangle */
row_max = uy1 / g_GridRoutingSize;
col_max = ux1 / g_GridRoutingSize;
row_min = uy0 / g_GridRoutingSize; // if (uy0 > row_min*g_GridRoutingSize ) row_min++;
col_min = ux0 / g_GridRoutingSize; // if (ux0 > col_min*g_GridRoutingSize ) col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= (Nrows - 1) )
row_max = Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= (Ncols - 1) )
col_max = Ncols - 1;
/* On s'assure que l'on place toujours au moins une cellule */
if( row_min > row_max )
row_max = row_min;
if( col_min > col_max )
col_max = col_min;
fdistmin = (float) distmin * distmin;
for( row = row_min; row <= row_max; row++ )
{
fdisty = (float) ( cy - (row * g_GridRoutingSize) );
fdisty *= fdisty;
for( col = col_min; col <= col_max; col++ )
{
fdistx = (float) ( cx - (col * g_GridRoutingSize) );
fdistx *= fdistx;
if( fdistmin <= (fdistx + fdisty) )
continue;
if( trace & 1 )
WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
WriteCell( row, col, TOP, color );
tstwrite = 1;
}
}
if( tstwrite )
return;
/* Si aucune cellule n'a ete ecrite, on touche les 4 voisins diagonaux
* (cas defavorable: pad hors grille, au centre des 4 voisins diagonaux) */
distmin = g_GridRoutingSize / 2 + 1;
fdistmin = ( (float) distmin * distmin ) * 2; /* = dist centre au point diagonal*/
for( row = row_min; row <= row_max; row++ )
{
fdisty = (float) ( cy - (row * g_GridRoutingSize) );
fdisty *= fdisty;
for( col = col_min; col <= col_max; col++ )
{
fdistx = (float) ( cx - (col * g_GridRoutingSize) );
fdistx *= fdistx;
if( fdistmin <= (fdistx + fdisty) )
continue;
if( trace & 1 )
WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
WriteCell( row, col, TOP, color );
}
}
}
/******************************************************************************/
void TraceSegmentPcb( BOARD* Pcb, TRACK* pt_segm, int color, int marge, int op_logique )
/******************************************************************************/
/* trace un Segment de piste sur le BOARD de routage
*/
{
int demi_pas, demi_largeur;
int ux0, uy0, ux1, uy1;
int layer = pt_segm->GetLayer();
demi_pas = g_GridRoutingSize / 2;
demi_largeur = (pt_segm->m_Width / 2) + marge;
/* Calcul du rectangle d'encadrement du segment ( si H,V ou Via) */
ux0 = pt_segm->m_Start.x - Pcb->m_BoundaryBox.m_Pos.x;
uy0 = pt_segm->m_Start.y - Pcb->m_BoundaryBox.m_Pos.y;
ux1 = pt_segm->m_End.x - Pcb->m_BoundaryBox.m_Pos.x;
uy1 = pt_segm->m_End.y - Pcb->m_BoundaryBox.m_Pos.y;
if( color == VIA_IMPOSSIBLE )
layer = -1;
/* Test si VIA (cercle plein a tracer) */
if( pt_segm->m_StructType == TYPEVIA )
{
TraceFilledCercle( Pcb, pt_segm->m_Start.x, pt_segm->m_Start.y, demi_largeur,
0x0000FFFF, color, op_logique );
return;
}
/* Le segment est ici un segment de droite ou un cercle ou un arc: */
if( pt_segm->m_Shape == S_CIRCLE )
{
TraceCercle( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique );
return;
}
if( pt_segm->m_Shape == S_ARC )
{
TraceArc( ux0, uy0, ux1, uy1, pt_segm->m_Param, demi_largeur, layer, color, op_logique );
return;
}
/* Le segment est ici un segment de droite */
if( (ux0 != ux1) && (uy0 != uy1) ) // segment incline
{
DrawSegmentQcq( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique );
return;
}
// Ici le segment est HORIZONTAL ou VERTICAL
// DrawHVSegment(ux0,uy0,ux1,uy1,demi_largeur,layer,color,op_logique); //F4EXB 051018-01
DrawSegmentQcq( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique ); //F4EXB 051018-01
return; //F4EXB 051018-01
}
/******************************************************************************************/
void TraceLignePcb( int x0, int y0, int x1, int y1, int layer, int color, int op_logique )
/******************************************************************************************/
/* trace une ligne; si layer = -1 sur toutes les couches
*/
{
int dx, dy, lim;
int cumul, inc, il, delta;
void (*WriteCell)( int, int, int, BoardCell );
switch( op_logique )
{
default:
case WRITE_CELL:
WriteCell = SetCell; break;
case WRITE_OR_CELL:
WriteCell = OrCell; break;
case WRITE_XOR_CELL:
WriteCell = XorCell; break;
case WRITE_AND_CELL:
WriteCell = AndCell; break;
case WRITE_ADD_CELL:
WriteCell = AddCell; break;
}
if( x0 == x1 ) // ligne verticale
{
if( y1 < y0 )
EXCHG( y0, y1 );
dy = y0 / g_GridRoutingSize; lim = y1 / g_GridRoutingSize;
dx = x0 / g_GridRoutingSize;
/* Clipping aux limites du board */
if( (dx < 0) || (dx >= Ncols) )
return;
if( dy < 0 )
dy = 0;
if( lim >= Nrows )
lim = Nrows - 1;
for( ; dy <= lim; dy++ )
{
OP_CELL( layer, dy, dx );
}
return;
}
if( y0 == y1 ) // ligne horizontale
{
if( x1 < x0 )
EXCHG( x0, x1 );
dx = x0 / g_GridRoutingSize; lim = x1 / g_GridRoutingSize;
dy = y0 / g_GridRoutingSize;
/* Clipping aux limites du board */
if( (dy < 0) || (dy >= Nrows) )
return;
if( dx < 0 )
dx = 0;
if( lim >= Ncols )
lim = Ncols - 1;
for( ; dx <= lim; dx++ )
{
OP_CELL( layer, dy, dx );
}
return;
}
/* Ici l'angle est quelconque: on utilise l'algorithme de LUCAS */
if( abs( x1 - x0 ) >= abs( y1 - y0 ) ) /* segment peu incline */
{
if( x1 < x0 )
{
EXCHG( x1, x0 ); EXCHG( y1, y0 );
}
dx = x0 / g_GridRoutingSize; lim = x1 / g_GridRoutingSize;
dy = y0 / g_GridRoutingSize;
inc = 1; if( y1 < y0 )
inc = -1;
il = lim - dx; cumul = il / 2; delta = abs( y1 - y0 ) / g_GridRoutingSize;
for( ; dx <= lim; )
{
if( (dx >= 0) && (dy >= 0)
&& (dx < Ncols) && (dy < Nrows) )
{
OP_CELL( layer, dy, dx );
}
dx++; cumul += delta;
if( cumul > il )
{
cumul -= il; dy += inc;
}
}
}
else
{
if( y1 < y0 )
{
EXCHG( x1, x0 ); EXCHG( y1, y0 );
}
dy = y0 / g_GridRoutingSize; lim = y1 / g_GridRoutingSize;
dx = x0 / g_GridRoutingSize;
inc = 1; if( x1 < x0 )
inc = -1;
il = lim - dy; cumul = il / 2; delta = abs( x1 - x0 ) / g_GridRoutingSize;
for( ; dy <= lim; )
{
if( (dx >= 0) && (dy >= 0)
&& (dx < Ncols) && (dy < Nrows) )
{
OP_CELL( layer, dy, dx );
}
dy++; cumul += delta;
if( cumul > il )
{
cumul -= il; dx += inc;
}
}
}
}
/*****************************************************************/
void TraceFilledRectangle( BOARD* Pcb,
int ux0, int uy0, int ux1, int uy1,
int masque_layer, int color, int op_logique )
/*****************************************************************/
/* Fonction Surchargee.
*
* Met a la valeur color l'ensemble des cellules du board inscrites dans
* le rectangle de coord ux0,uy0 ( angle haut a gauche )
* a ux1,uy1 ( angle bas a droite )
* Le rectangle est horizontal ( ou vertical )
* Coordonnees PCB.
*/
{
int row, col;
int row_min, row_max, col_min, col_max;
int trace = 0;
void (*WriteCell)( int, int, int, BoardCell );
if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] )
trace = 1; /* Trace sur BOTTOM */
if( (masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) && Nb_Sides )
trace |= 2; /* Trace sur TOP */
if( trace == 0 )
return;
switch( op_logique )
{
default:
case WRITE_CELL:
WriteCell = SetCell; break;
case WRITE_OR_CELL:
WriteCell = OrCell; break;
case WRITE_XOR_CELL:
WriteCell = XorCell; break;
case WRITE_AND_CELL:
WriteCell = AndCell; break;
case WRITE_ADD_CELL:
WriteCell = AddCell; break;
}
ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y;
ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y;
/* Calcul des coord limites des cellules appartenant au rectangle */
row_max = uy1 / g_GridRoutingSize;
col_max = ux1 / g_GridRoutingSize;
row_min = uy0 / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize )
row_min++;
col_min = ux0 / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= (Nrows - 1) )
row_max = Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= (Ncols - 1) )
col_max = Ncols - 1;
for( row = row_min; row <= row_max; row++ )
{
for( col = col_min; col <= col_max; col++ )
{
if( trace & 1 )
WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
WriteCell( row, col, TOP, color );
}
}
}
/***********************************************************************************/
void TraceFilledRectangle( BOARD* Pcb, int ux0, int uy0, int ux1, int uy1, int angle,
int masque_layer, int color, int op_logique )
/***********************************************************************************/
/* Fonction Surchargee.
*
* Met a la valeur color l'ensemble des cellules du board inscrites dans
* le rectangle de coord ux0,uy0 ( angle haut a droite )
* a ux1,uy1 ( angle bas a gauche )
* Le rectangle est tourne de la valeur angle (en 0,1 degres)
* Coordonnees PCB.
*/
{
int row, col;
int cx, cy; /* Centre du rectangle */
int rayon; /* rayon du cercle exinscrit */
int row_min, row_max, col_min, col_max;
int rotrow, rotcol;
int trace = 0;
void (*WriteCell)( int, int, int, BoardCell );
if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] )
trace = 1; /* Trace sur BOTTOM */
if( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] )
if( Nb_Sides )
trace |= 2;/* Trace sur TOP */
if( trace == 0 )
return;
switch( op_logique )
{
default:
case WRITE_CELL:
WriteCell = SetCell; break;
case WRITE_OR_CELL:
WriteCell = OrCell; break;
case WRITE_XOR_CELL:
WriteCell = XorCell; break;
case WRITE_AND_CELL:
WriteCell = AndCell; break;
case WRITE_ADD_CELL:
WriteCell = AddCell; break;
}
ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y;
ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y;
cx = (ux0 + ux1) / 2; cy = (uy0 + uy1) / 2;
rayon = (int) sqrt( (float) (cx - ux0) * (cx - ux0)
+ (float) (cy - uy0) * (cy - uy0) );
/* Calcul des coord limites des cellules appartenant au rectangle */
row_max = (cy + rayon) / g_GridRoutingSize;
col_max = (cx + rayon) / g_GridRoutingSize;
row_min = (cy - rayon) / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize )
row_min++;
col_min = (cx - rayon) / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= (Nrows - 1) )
row_max = Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= (Ncols - 1) )
col_max = Ncols - 1;
for( row = row_min; row <= row_max; row++ )
{
for( col = col_min; col <= col_max; col++ )
{
rotrow = row * g_GridRoutingSize; rotcol = col * g_GridRoutingSize;
RotatePoint( &rotcol, &rotrow, cx, cy, -angle );
if( rotrow <= uy0 )
continue;
if( rotrow >= uy1 )
continue;
if( rotcol <= ux0 )
continue;
if( rotcol >= ux1 )
continue;
if( trace & 1 )
WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
WriteCell( row, col, TOP, color );
}
}
}
/*****************************************************************/
void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, int layer,
int color, int op_logique )
/*****************************************************************/
/* Remplit toutes les cellules du BOARD contenues dans le segment
* de demi-largeur lg, org ux,y0 fin ux,y1 a la valeur color .
* coord en unites PCB (0.1 mil) relatives a l'origine pt_pcb->m_PcbBox.m_Xmin,Y du board.
*/
{
int row, col;
int inc;
int row_max, col_max, row_min, col_min;
int demi_pas;
void (*WriteCell)( int, int, int, BoardCell );
int angle;
int cx, cy, dx, dy;
switch( op_logique )
{
default:
case WRITE_CELL:
WriteCell = SetCell; break;
case WRITE_OR_CELL:
WriteCell = OrCell; break;
case WRITE_XOR_CELL:
WriteCell = XorCell; break;
case WRITE_AND_CELL:
WriteCell = AndCell; break;
case WRITE_ADD_CELL:
WriteCell = AddCell; break;
}
/* on rend la coordonnee ux1 tj > ux0 , pour simplifier les calculs */
if( ux1 < ux0 )
{
EXCHG( ux1, ux0 ); EXCHG( uy1, uy0 );
}
/* calcul de l'increment selon axe Y */
inc = 1; if( uy1 < uy0 )
inc = -1;
/* Calcul de l'encadrement : */
demi_pas = g_GridRoutingSize / 2;
col_min = (ux0 - lg) / g_GridRoutingSize;
if( col_min < 0 )
col_min = 0;
col_max = (ux1 + lg + demi_pas) / g_GridRoutingSize;
if( col_max > (Ncols - 1) )
col_max = Ncols - 1;
if( inc > 0 )
{
row_min = (uy0 - lg) / g_GridRoutingSize;
row_max = (uy1 + lg + demi_pas) / g_GridRoutingSize;
}
else
{
row_min = (uy1 - lg) / g_GridRoutingSize;
row_max = (uy0 + lg + demi_pas) / g_GridRoutingSize;
}
if( row_min < 0 )
row_min = 0;
if( row_min > (Nrows - 1) )
row_min = Nrows - 1;
if( row_max < 0 )
row_max = 0;
if( row_max > (Nrows - 1) )
row_max = Nrows - 1;
dx = ux1 - ux0; dy = uy1 - uy0;
if( dx )
angle = (int) (atan2( dy, dx ) * 1800 / M_PI);
else
{
angle = 900; if( dy < 0 )
angle = -900;
}
RotatePoint( &dx, &dy, angle ); /* dx = longueur, dy = 0 */
for( col = col_min; col <= col_max; col++ )
{
int cxr;
cxr = (col * g_GridRoutingSize) - ux0;
for( row = row_min; row <= row_max; row++ )
{
cy = (row * g_GridRoutingSize) - uy0;
cx = cxr;
RotatePoint( &cx, &cy, angle );
if( abs( cy ) > lg )
continue; /* Le point est trop loin sur l'axe Y */
/* ici le point a tester est proche du segment: la position
* selon l'axe X doit etre testee */
if( (cx >= 0) && (cx <= dx) )
{
OP_CELL( layer, row, col );
continue;
}
/* examen des extremites qui sont arrondies */
if( (cx < 0) && (cx >= -lg) )
{
if( ( (cx * cx) + (cy * cy) ) <= (lg * lg) )
OP_CELL( layer, row, col );
continue;
}
if( (cx > dx) && ( cx <= (dx + lg) ) )
{
if( ( ( (cx - dx) * (cx - dx) ) + (cy * cy) ) <= (lg * lg) )
OP_CELL( layer, row, col );
continue;
}
}
}
}
/********************************************************************/
void DrawHVSegment( int ux0, int uy0, int ux1, int uy1, int demi_largeur, int layer,
int color, int op_logique )
/********************************************************************/
/* Draw a horizontal or vertical segment.
* same as DrawSegmentQcq, but faster
*/
{
int row, col;
int row_max, col_max, row_min, col_min;
void (*WriteCell)( int, int, int, BoardCell );
switch( op_logique )
{
default:
case WRITE_CELL:
WriteCell = SetCell; break;
case WRITE_OR_CELL:
WriteCell = OrCell; break;
case WRITE_XOR_CELL:
WriteCell = XorCell; break;
case WRITE_AND_CELL:
WriteCell = AndCell; break;
case WRITE_ADD_CELL:
WriteCell = AddCell; break;
}
// Modif des coord pour que les coord de fin soient > coord de debut
if( uy1 < uy0 )
EXCHG( uy0, uy1 ); // ceci n'est vrai que parce que
if( ux1 < ux0 )
EXCHG( ux0, ux1 ); // dx ou dy ou les 2 sonts nuls
// Le segment est assimile a un rectangle.
// TODO: traiter correctement les extremites arrondies
// if ( ux0 == ux1 ) // Vertical Segment
{
ux0 -= demi_largeur; ux1 += demi_largeur;
}
// else // Horizontal segment
{
uy0 -= demi_largeur; uy1 += demi_largeur;
}
// Calcul des coord limites des cellules appartenant au rectangle
row_max = uy1 / g_GridRoutingSize;
col_max = ux1 / g_GridRoutingSize;
row_min = uy0 / g_GridRoutingSize;
if( uy0 > row_min * g_GridRoutingSize )
row_min++; // Traitement de l'arrondi par defaut
col_min = ux0 / g_GridRoutingSize;
if( ux0 > col_min * g_GridRoutingSize )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= (Nrows - 1) )
row_max = Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= (Ncols - 1) )
col_max = Ncols - 1;
if( row_min > row_max )
row_max = row_min;
if( col_min > col_max )
col_max = col_min;
for( row = row_min; row <= row_max; row++ )
{
for( col = col_min; col <= col_max; col++ )
{
OP_CELL( layer, row, col );
}
}
}
/*****************************************************************/
void TraceCercle( int ux0, int uy0, int ux1, int uy1, int lg, int layer,
int color, int op_logique )
/*****************************************************************/
/* Remplit toutes les cellules du BOARD contenues dans le cercle
* de demi-largeur lg, centre ux,y0 passant par ux,y1 a la valeur color .
* coord en unites PCB (0.1 mil) relatives a l'origine pt_pcb->m_PcbBox.m_Xmin,Y du board.
*/
{
int rayon, nb_segm;
int x0, y0, // Point de depart du segment en cours de trace
x1, y1; // point d'arrivee
int ii;
int angle;
rayon = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) );
x0 = x1 = rayon; y0 = y1 = 0;
if( lg < 1 )
lg = 1;
nb_segm = (2 * rayon) / lg;
if( nb_segm < 5 )
nb_segm = 5;
if( nb_segm > 100 )
nb_segm = 100;
for( ii = 1; ii < nb_segm; ii++ )
{
angle = (3600 * ii) / nb_segm;
x1 = (int) (rayon * fcosinus[angle]);
y1 = (int) (rayon * fsinus[angle]);
DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logique );
x0 = x1; y0 = y1;
}
DrawSegmentQcq( x1 + ux0, y1 + uy0, ux0 + rayon, uy0, lg, layer, color, op_logique );
}
/****************************************************************************/
void TraceArc( int ux0, int uy0, int ux1, int uy1, int ArcAngle, int lg, int layer,
int color, int op_logique )
/****************************************************************************/
/* Remplit toutes les cellules du BOARD contenues dans l'arc de "longueur" angle
* de demi-largeur lg, centre ux,y0 commencant en ux,y1 a la valeur color .
* coord en unites PCB (0.1 mil) relatives a l'origine
* pt_pcb->m_PcbBox.m_Xmin,Y du board.
*/
{
int rayon, nb_segm;
int x0, y0, // Point de depart du segment en cours de trace
x1, y1; // point d'arrivee
int ii;
int angle, StAngle;
rayon = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) );
x0 = ux1 - ux0;
y0 = uy1 - uy0;
StAngle = ArcTangente( uy1 - uy0, ux1 - ux0 );
if( lg < 1 )
lg = 1;
nb_segm = (2 * rayon) / lg;
nb_segm = ( nb_segm * abs( ArcAngle ) ) / 3600;
if( nb_segm < 5 )
nb_segm = 5;
if( nb_segm > 100 )
nb_segm = 100;
for( ii = 1; ii <= nb_segm; ii++ )
{
angle = (ArcAngle * ii) / nb_segm;
angle += StAngle;
while( angle >= 3600 )
angle -= 3600;
while( angle < 0 )
angle += 3600;
x1 = (int) (rayon * fcosinus[angle]);
y1 = (int) (rayon * fsinus[angle]);
DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logique );
x0 = x1; y0 = y1;
}
// DrawSegmentQcq(x1+ux0,y1+uy0, ux0+rayon, uy0,lg,layer, color, op_logique);
}